Microphone + speaker = feedback. I can’t believe there are more than a handful of people on our planet who haven’t heard this primal electronic squeal. But then I am of the feedback generation: from John Lennon’s disruptive skid into “I Feel Fine” in 1964 to Jimi Hendrix’s performances in the films of the Monterey Pop Festival and Woodstock, feedback was as essential a voice in the music of my youth as guitars and drums. When I arrived as a freshman at Wesleyan University in 1972 and fell under the twin influences of John Cage and Alvin Lucier, feedback re-asserted itself as a fortuitous gift.

Cage’s admonition that “any sound can be a musical sound” induced a kind of sonic paralysis in me. I spent hours in front of the studio’s synthesizer only to realize, at the end of the night, that I had no preference for one configuration of patchcords over another. But plug in a microphone, turn up the speaker, and feedback’s Zen-like infinite amplification of silence produced sounds with minimal interference on my part. Feedback served as a sort of electronic I Ching: I moved the mike instead of tossing yarrow sticks, notes emerged, but I never knew which pitch would pop out next. The results were more a question of acoustics, however, than of pure chance -- the overtone series became my hexagrams -- and here’s where my second role model, Lucier, exerted his influence.

I grew up in a rather unmusical family, with architectural historians for parents. At age 18 my interests were all over the place. Without a “serious” musical background to draw on, I found Lucier’s embrace of fundamental acoustics in compositions such as *Chambers, Vespers* and *I am sitting in a room* deeply reassuring. Physical acoustics – and the notion that a room or a teapot could be a musical instrument and an echolocating bat a musician -- became the conceptual glue with which I sought to unify my disparate interests into a meaningful, personal musical style.

The Wesleyan studio had a Sony 152SD portable stereo cassette recorder, about the size of an attaché case. I could trick it into serving as a microphone preamplifier by poking the end of my pinkie against a tab in the cassette well while pressing down the “Record” button. The line outputs could be patched into any amp and speakers, but the Sony also had a robust internal speaker that transformed the recorder into a self-contained, portable feedback instrument. Moreover, its built-in limiter did a wonderful job of taming feedback’s shriek, reducing it to a mellow sine wave1.
For the next three years I ran feedback through as many variations as I could. I carried the Sony outdoors and used feedback to “play” culverts under roadways as if they were huge trombones. Lucier owned a set of Shure industrial contact microphones (intended for analyzing noises in machinery) with which I could similarly play solid objects such as tables, walls, floors and tree trunks. I resonated wind and brass instruments by embedding tiny lavaliere microphones inside mouthpieces and feeding them back with speakers; performers used fingering or slide position, as well as movement of the instrument in space, to nudge the feedback to break to different overtones. Later I substituted small speakers for some of the mouthpiece microphones, transforming trombones and tubas into “speaker-instruments”, and I manipulated feedback between pairs of instruments without the need for an external PA.

The Countryman Phase Shifter

When the Electronic Music Studios opened in the new Wesleyan Arts Center in 1973, Lucier disconnected the keyboards from the two Arp 2600 synthesizers and locked them in a closet. This was done primarily to pre-empt Switched-on-Rock riffs, but his students’ placid acceptance of this musical snobbery was indicative of the “proto-digital” direction that synthesis was taking by that time. Rather than playing the Arp directly in the manner of an elaborate electric organ, we interconnected the various voltage-controlled modules (oscillators, filters, amplifiers, etc.) to create self-governing networks that, left to their own devices, created complex, cyclical patterns. By the end of the decade we were programming similar work on primitive, pre-Apple microcomputers like the Kim-1, but during my undergraduate days plugging patchcords and twiddling knobs was as close as I got to writing lines of code.

It was in this spirit that I began building synthesizer patches to control feedback. My goal was to emulate electronically the movement of the microphone in space, and thus create some kind of automatic feedback variation machine. I cobbled together numerous arrangements of filters and panners, modulated by low frequency oscillators, before stumbling upon the Countryman 968 Phase Shifter.
Phase Shifters are generally known for the characteristic shwooshing sound that defined the disco era, but in the time before digital delays these devices were the only practical way to produce variable short time delays on audio signals. Lucier had made some field recordings of the electromagnetic signals produced by meteorites, lightning, the dawn chorus and other atmospheric disturbances; he wanted to move these sounds around a concert space and had read about “Haas Effect Panning” – a technique that produces very convincing spatial movement of sound using small time delays (instead of the more typical method of adjusting the balance of loudness amongst the various speakers). The Countrymen were bought for these panning experiments. In the spring of my sophomore year Lucier delegated me to figure out how to get the Phase Shifters to zoom his recordings around the Merce Cunningham Dance Studio, where he had been asked to provide music for a Cunningham Event. Two Arp 2600s and three Countrymen later I had an absurdly complicated patch that convincingly swept his “Sferics” around the Westbeth studio in response to their own loudness.

Back in Middletown, I adapted my patch to the task of using a similar loudness tracing to “move” a live microphone, instead of panning Lucier’s pre-recorded sounds. Over a period of months I whittled away modules until I was left with the simplest of all possible configurations:

I discovered that when I connected a microphone to a speaker through a Phase Shifter, varying the delay emulated moving the microphone towards and away from the speaker, in turn causing the feedback to break to different frequencies. Controlling this virtual movement with the loudness of the signal (via an “envelope follower” circuit conveniently built into the Countryman) mimicked a nervous sound engineer jerking back a microphone as soon as it starts to feed back.

I threw in my trusty Sony limiters to keep the signal smooth. Whatever equalization was available in the sound system (usually nothing more elaborate than the bass and treble tone controls on the studio’s Dynaco amplifiers) could be tweaked to adjust the frequency range of the feedback. By experimenting with the different microphones available in the studio I discovered that omnidirectional mikes produced a much wider, less shrieky range of pitches than the more common unidirectional cardioid microphones (even the best cardioid mikes have rather irregular off-axis frequency response, which I suspect affects their feedback characteristics).
A single chain of microphone, phase-shifter, speaker tended to seesaw back and forth between two pitches of feedback. But when two more independent channels were added, the various channels interacted acoustically to produce more varied and extended melodic patterns. Moreover, these patterns were hypersensitive to the smallest change in acoustic conditions: walking a few steps across the room, making a sound, even opening a door or window could cause a note to be dropped from the melodic phrases or a new one to be added.

I had stumbled upon a remarkably simple electronic network that created a site-specific “architectural raga” out of a room’s resonant frequencies. The phrasing was a function of the reverberation time – bigger halls yielded slower patterns. Perhaps the most elegant aspect was the responsiveness of the sound itself: one “played” this system not by twiddling knobs or pushing buttons, but by moving or making sounds within field of the feedback.

The 1970s saw the emergence and maturation of the notion of the “circuit as score” – the assumption that a configuration of electronic components was as legitimate an expression of compositional intent as staves on manuscript paper. I had no desire to dictate specific instrumental actions or body movements, but I was nonetheless quite content to claim this array of modules as my “composition.” I dubbed it Pea Soup: a reference to the first letters of the core technology (Phase Shifter) and to the expression “as thick as pea soup”, which I thought conveyed well the experience of standing within the sea of feedback. The first performance took place in a lunchtime concert in the Wesleyan Electronic Music Studios on October 24, 1974.

Pea Soup incorporated four of what I regard (in all modesty) as axiomatic innovations in the well-trodden field of feedback music:

- **Phase delay** changes feedback frequency by emulating physical movement of the microphone.
- A **limiter** controls feedback and transforms a shriek into a mellow sine wave.
- **Omnidirectional** microphones (especially dynamic ones) produce more controllable feedback than cardioid mikes.
- To the best of my knowledge this is the first composition to use automatic negative feedback (the typical “control feedback” studied in cybernetics) to control audible positive feedback.

Over the remainder of my undergraduate career at Wesleyan I produced several performances and gallery installations of Pea Soup on and off campus. With Lucier’s encouragement and connections, his small but assertive posse of students pursued concert exchanges with other colleges around New England. I drafted players on site or from amongst my fellow students – most frequently the singer Geordie Arnold, who for some time was a member of Steve Reich’s
ensemble. I supplemented the electronics with verbal instructions, consisting mostly of admonitions to “do less.” The site-specificity of Pea Soup’s character made it a satisfyingly portable work, familiar yet surprising wherever it was played. I compiled an overwrought prose score for inclusion in my undergraduate Honor’s Thesis13, but had to leave the Countrymen in studio when I graduated in 1976, and Pea Soup was consigned to history.

Reconstruction

Feedback returned to my music with the regularity of a comet over the next few decades, even as my technological palette shifted from homemade circuits to microcomputers to human improvisers to chamber ensembles and back to handmade circuits14. In 1997, while living in Berlin as a guest of the DAAD Künstlerprogramm, I was asked to revive Pea Soup (after a hiatus of more than 20 years) by Kammerensemble Neue Musik Berlin, who were interested in taking on some interactive works for electronics and players. I reconstructed the original phase shifter circuit with the aid of a schematic generously provided by Carl Countryman himself (who had ceased manufacturing the device sometime in the mid-1970s)15. Sadly, the Countryman contained one custom-made sub-module that was very difficult to replicate, and try as I might certain characteristics of the original design remained beyond my reach.

In 2000 I bought a Moogerfooger M103 Phaser which I modified (thanks this time to documentation directly from the hand of Robert Moog) to mimic the behavior of the original Countryman as best I could; a beautiful circuit indeed, but still not exactly what I needed for this piece. I shelved my boxes after a few more performances and moved on to other projects16.

Figure 5: 3-channel Countryman copy, Nicolas Collins (1999)

Figure 6: Modified Moogerfooger M103 Phase Shifter (box on right contains envelope followers), Nicolas Collins (2001)
But the Berlin revival of *Pea Soup* was indicative of a wide-spread nostalgia, at the cusp of the millennium, for earlier electronic music: John Cage’s *Cartridge Music* (1960), Takehisa Kosugi’s *Micro 1* (1964), Steve Reich’s *Pendulum Music* (1968) and David Tudor’s *Rainforest IV* (1973) all returned to the concert stage after decades of retirement. This interest in historic works, many of them dependent on obsolete or composer-built technology, coincided with the spread of music programming languages that ran on affordable computers powerful enough for real-time audio signal processing. The net result was a wave of “porting” of older, hardware-based electronic repertoire into software formats. Sometimes the programming was done by the original composer (David Behrman comes to mind); other times enthusiastic young fans took on the task, adapting older solo works for the emerging format of the “laptop ensemble”. The quirky look of a table of homemade circuits and cheap effect pedals was lost on the computer screen, and there often was some subtle change in sound quality. But for performance convenience and ease of distribution this method of reconstruction could not be faulted.

Shortly after moving back to America in 1999 I was asked to resurrect another circuit-based composition from the mid-1980s, *Devil’s Music*. Unable to locate or rebuild the proper hardware, I programmed a workable facsimile in Max/MSP17. Around the same time I undertook a similar software adaptation of *Pea Soup*.

The impetus for the revival of *Devil’s Music* was external: a request for a version that could be played by multiple performers in a club context. Limitless duplication and open distribution made software seem the most appropriate strategy. The work on *Pea Soup* was more selfish: my fascination with essential elements of the composition had been re-kindled by recent circuit-based performances, and I wanted to bring the piece back into my touring repertoire. The final trigger was the discovery of a third party Max “object” (set of software instructions) that emulated the core mathematical function of a phase shift network, and allowed me to delay the audio by degrees of phase – as in the original analog circuits – rather than the absolute time, as is more common in the digital domain18. I successfully programmed my own replica of a Countryman Phase Shifter using this function. I added a basic limiter and some simple equalization, I copied and pasted the whole chain to make three discrete channels, and by the summer of 2001 had created a reasonable approximation of my 1974-era technology.

Over the subsequent years I have presented over 60 performances and installations of the new *Pea Soup*. The somewhat severe, strictly minimalist, task-oriented composition of the 1970s has been replaced by something more akin to “improvising with architecture” – with the right players I need say little to facilitate a good performance. In the hands of a sensitive musician with a good ear and a modest ego the piece is virtually foolproof. The behavior of the technology hasn’t changed significantly (despite its shift from hardware to software), feedback is still feedback, and architectural acoustics certainly are the same now as they were in 1974; but over the past three decades musicians in general have become more skilled at performing open-form compositions that require an instinct for improvisation.
The Software

It’s tempting to “improve” a circuit when one programs an equivalent in software: physical sliders and knobs have limits past which they will not move, but numbers in a program can always be made larger or smaller. Sometimes it’s important to retain what are, in software, “artificial” limitations in order to remain faithful to the essential character of the original work. At the same time, some traits in hardware are the result of economic or technological factors that, if eliminated, could actually benefit the music.

Every few years I return to the program to tweak its behavior or add features, and my challenge has been to preserve the simple, elegant core of the old analog Pea Soup while adding appropriate innovations that are only possible today thanks to the power of software. (“Authenticity”, in this particular case, is somewhat irrelevant: it’s my piece, I’ll change it as I want.)

Here is an overview of the key features implemented in the software:

- **Countryman Phase Shifter**: three channels of a reasonable facsimile of the Model 968, each with a built-in Envelope Follower to change phase delay in response to loudness.
- **Limiter**: a simple limiter on each channel to prevent distortion, with adjustable threshold (loudness at which limiting sets in).
- **Equalization**: low frequency and high frequency shelving filters with boost and cut controls, as well as adjustable corner frequencies. One can use this EQ to roll off shrieking high frequency feedback, boost the bass response, etc.
These three modules are software equivalents of the analog circuits in the original *Pea Soup* patch. To these I have added a few routines that extend the capabilities of the system in ways that would have been very difficult before the advent of digital technology. The principle ones are:

- **Feedback Nulling Filters:** with a tap of the “x” on the computer keyboard a filter locks onto the currently sounding pitch of feedback and attenuates that frequency just enough to silence it. This mimics an attentive sound engineer tuning the equalization on the mixer to minimize feedback from mikes on the stage. My module has eight such notch filters: whenever a particular frequency of feedback gets too persistent, an “x” will knock it out and allow other pitches to replace it. With each strong frequency thus eliminated the remaining overtone set shifts – judicious use of the Nulling Filters can steer *Pea Soup* through “key changes” as the piece unfolds.

- **Whistler:** playing or singing at the same frequency as the feedback, then de-tuning slightly, produces a beating effect that – if sustained – often causes the feedback to break to a new pitch. Via a trackpad or mouse, the Whistler module lets the user mix a pair of sine waves into the output, and de-tune them symmetrically above and below the sounding feedback pitch, to induce beating and pitch breaks.

The best performances of *Pea Soup* result from playing *acoustically* and moving within the spatial field of the feedback. Manipulations of the electronic circuits or software are best done as part of the “tuning” process, and I encourage performers to interfere with the patch as little as possible once the performance is underway. The Nulling Filters are useful for eliminating strong resonances from the system in the course of the sound check, but, used judiciously, can also subtly modulated the “key” of the feedback over the course of the performance. The Whistler can serve as a substitute for a live musician.

In 2011 I uploaded the software to my website for musicians interested in staging performances. The MEA group in Amsterdam has *Pea Soup* in their repertoire, and Swiss pianist Petra Ronner has begun performing the work.

Pea Soup To Go

Belying its 1970s roots, *Pea Soup* is a classic open-form composition: the score and technology are static, the feedback always sounds more or less the same, yet the actual pitch material is entirely site specific, and varies significantly from performance to performance. Every room has its own tuning. Both during its analog days and after I had shifted over to software I often performed *Pea Soup* as the opening piece on a concert program -- it serves as the *alap* section of an architectural raga, slowly revealing the essential musical characteristics of the concert space (characteristics that influence every subsequent piece played in the room, whether one is conscious of this acoustic underpinning or not.) I recorded many of these performances, and after I had accumulated a few dozen sound files I toyed with the idea of
editing them into a long tape composition. I imagined that, properly sequenced, each “room chord” would modulate to the next like a glacially slowed down Progressive Rock composition from the 1970s.

But, alas, the same Cagean stasis that drove me to feedback in 1972 rendered me incapable of choosing one pretentious chord change over another. So I took refuge in that most ubiquitous mass-market adaptation of Cage’s philosophy: “Shuffle Play.” I worked with a former graduate student to craft a web application that plays back my library of Pea Soup recordings in pseudo-random order. The start and end points are randomized as well, so that the files don’t always start and finish at the same times. Long cross-fades (15 seconds) make for a seamless mix. The end result, Pea Soup To Go (2014) is an encyclopedia of architectural ragas in the form of an “audio screen saver.”

Figure 8: Pea Soup To Go (2014), software for shuffling concert recordings of Pea Soup

Afterword

I am aware that there is something slightly pathetic about a composer in his fifties revisiting a student work, but taking Pea Soup back out on the road reawakened my primal interest in the musical implications architectural acoustics. The Nulling Filter routine in the software version of Pea Soup reveals that the more remote overtones of room’s resonant frequencies tend towards greater dissonance than the pitches that dominate feedback in an unequalized sound system. I found this intriguing from the standpoint of harmonic theory, and began work on a computer program that uses an extension of the Nulling Filter to analyze the overtones of a room and display the first 24, in order of strength, as conventional staff notation. The staves are projected for the musicians (and audience) to see. The players take these pitches as tonal material for simple variations, as they slowly make their way into the more obscure regions of the overtone set. The audience hears an odd
hybrid of Serial and Minimalist music. At the end of the night the notation is printed out and remains as a musical portrait of the concert space.

Figure 9: Roomtone Variations (2014), score from real-time analysis of room acoustics

1 See Attachment 1.
6 See Attachment 3.
7 A technical detail: whereas a digital delay delays all frequencies of an audio signal by the same amount of time, a phase shifter delays the signal by a certain number of degrees of phase (typically from 0 to 1080 degrees or so). The absolute delay time varies according to the frequency of the signal: 360° of phase shift on 440hz = 2.2ms, while the same phase shift delays a 1kHz signal by only 1ms. In this way a phase shifter smears the frequency spectrum in time in a very counterintuitive fashion. Not only is the resulting delay very, very short (typically less than 10ms), but this smear changes the sound in ways that cannot be effectively emulated with later digital delays.
9 My favorite feedback microphone is still the Electro-Voice 635a dynamic omnidirectional mike, of which we had several in the Wesleyan studio. A popular reporter’s interviewing microphone that is still in production today, more than 50 years after it was introduced. See Attachment 2.
10 Three channels turned out to be the magic number: with just two channels (stereo) the patterns never got rich enough, but adding a fourth didn’t make noticeable improvement. Luckily the studio had three Countrymen, but one developed odd intermittent noise after a year or so. At the suggestion of some
sage we discovered that placing the Phase Shifter in a freezer overnight warded off the noise for 30 minutes or so, but three-channel performances continued to be risky endeavors.

11 In later years, especially when I was working at STEIM in Amsterdam in the 1990s, I encountered many instruments and installations that used ultrasound or infrared motion detectors to track and respond to movement, but I’ve never heard another music system in which the sounds themselves were their own controlling element.

12 I was assisted in this concert by Robert Poss, who was at the time a promising student in a class I was teaching (although I was a mere undergraduate) because Lucier was on sabbatical that semester. I continued to work with Robert after we both left Wesleyan: I produced a few records by his rock bands, we ran an indie label together, he masters my recordings these days, I build him effect boxes, and we continue to play together upon occasion.

14 See Collins. “All This And Brains Too”.
15 See Attachment 4.

One performance, from the Limbo Festival in Plasy monastery, was released on a label started by an ex-student of mine shortly after he graduated from SAIC: Nicolas Collins. *Pea Soup*. Apestraartje CD (2004).

18 A Hilbert Transform, to be specific. I am a lousy mathematician and a sloppy programmer, but in the early days of the analog *Pea Soup*, when I was collecting circuit diagrams in pursuit of building my own phase shifters, I had stumbled upon a short article in an electronic engineering magazine that showed a rather unusual implementation of a phase shifter using an analog realization of something called “a Hilbert Transform”, a function normally associated with analog frequency shifter such as that made by Harold Bode (see Attachment 5.) Some 25 years later the name “Hilbert” caught my eye in a list of Max objects available from IRCAM, the venerable French computer music research center. Once downloaded, that chunk of code became the core of the digital realization of *Pea Soup*.

19 A more detailed description of the software can be found in the current performance score for *Pea Soup*: http://www.nicolascollins.com/texts/PeaSoup2014.pdf.

20 The current version of the program can be downloaded here: http://www.nicolascollins.com/software/peasoupmac.zip.

ATTACHMENTS

Attachment 1:
Partial schematic of Sony TC152-SD Cassette Recorder, showing feedback-friendly microphone preamplifier and limiter.

Attachment 2:
Data sheet for Electro-Voice 635a microphone.

Attachment 3:
Brochure for Countryman Model 968 Phase Shifter (c. 1974.)

Attachment 4:
Circuit diagram for Countryman Model 968 Phase Shifter, with email correspondence with Carl Countryman that led to my being faxed the schematic (1996.)

Attachment 5:
SECTION 4
DIAGRAMS

4-1. SCHEMATIC DIAGRAM
SPECIFICATIONS
Element: Dynamic
Frequency Response: 80-15,000 Hz
Polar Pattern: Omnidirectional
Impedance: Low (150 ohms)
Output Level: -55 dB
(0 dB = 1 mW/pascal)
Case Material: Steel
Dimensions: 151 mm (5.94 in.) long,
30 mm (1.14 in.) diameter
Finish: 635A/B Semi-gloss black
635A Fawn beige
Accessories Included:
Model 311 stand adapter—not included in
six pack
4.8 m (15 ft), 2-conductor shielded
broadcast type synthetic rubber—
jacketed with Switchcraft A3F connector.
Optional Accessories:
307 shock mount
313 stand clamp
314E windshield
340 security clamp
342 security stud mount
Net Weight:
170 grams (6 oz.)
Shipping Weight:
635A/B: 454 grams (16 oz.)
635A/B Six Pack: 1.64 Kg. (58 oz.)
Package Size:
635A & 635A/B:
133.4 mm (5.25 in.) wide,
76.2 mm (3.0 in.) high,
241.3 mm (9.5 in.) long

635A & 635A/B Six Pack:
355.6 mm (14 in.) wide,
215.9 mm (8.5 in.) high,
152.4 mm (6 in.) long

DESCRIPTION AND APPLICATIONS
The Electro-Voice 635A and 635A/B are
designed for exacting professional applications such as film production, recording, FM, AM, and TV broadcasting and the more
demanding PA applications.

The 635A and 635A/B may be purchased in
packages of six. These "six packs" do not
include the stand adapter or cable.

The high output level, and low sensitivity to
mechanical shock, make the 635A and 635A/B
excellent for interviews and for pass-around
use in audiences.

The 635A and 635A/B feature a diaphragm
which permits very smooth response over a
wide frequency range. The diaphragm
withstands humidity and temperature extremes, corrosive effects of salt air, and
devastating mechanical shocks. It is practically
indestructible with normal use.

A four-stage pop and dust filter insures a
completely pop-free performance and virtually
eliminates an external windscreen for outdoor
use.

An internal shock absorber effectively reduces the
pickup of cable and other noise generated
by external contact.

ARCHITECTS’ AND ENGINEERS’
SPECIFICATIONS
The microphone shall be an Electro-Voice
Model 635A or 635A/B. The microphone shall
be an omnidirectional dynamic type with wide
range response uniform from 80 to 13,000 Hz.
It shall have a four-stage pop filter, and
magnetic shield to prevent dust and magnetic
particles from reaching the diaphragm. The
impedance shall be such that the microphone
will match 50-, 150- and 250-ohm inputs. The
line shall be balanced to ground and phased.

The output level shall be -55 dB with 0 dB
equalling 1 mW/pascal. The magnetic circuit
shall be a non-welded circuit and employ
Alnico V magnetic iron. The case shall be
made of steel.

The microphone shall have a maximum
diameter of 36 mm (1.41 in.), a length of 151
mm (5.94 in.), and a weight of 170 grams (6
oz.). The microphone shall have a built-in
connector similar or equivalent to the
Switchcraft A3M.

The Electro-Voice Model 635A and 635A/B
are specified.

WARRANTY (Limited)
Electro-Voice products are guaranteed
against malfunction due to defects in
materials or workmanship for a specified
period, as noted in the individual product-line
statement(s) below, or in the individual
product data sheet or owner's manual,
beginning with the date of original purchase. If
such malfunction occurs during the specified
period, the product will be repaired or
replaced (at our option) without charge. The
product will be returned to the customer
prepaid. Exclusions and Limitations: The
Limited Warranty does not apply to: (a)
exterior finish or appearance; (b) certain
specific items described in the individual
product-line statement(s) below, or in the
individual product data sheet or owner's
WARRANTY (Limited)
(continued)
manual; (c) malfunction resulting from use or operation of the product other than as specified in the product data sheet or owner's manual; (d) malfunction resulting from misuse or abuse of the product; or (e) malfunction occurring at any time after repairs have been made to the product by anyone other than Electro-Voice or any of its authorized service representatives. Obtaining Warranty Service: To obtain warranty service, a customer must deliver the product, prepaid, to Electro-Voice or any of its authorized service representatives together with proof of purchase of the product in the form of a bill of sale or received invoice. A list of authorized service representatives is available from Electro-Voice at 600 Cecil Street, Buchanan, MI 49107 (616/295-6431) and/or Electro-Voice West, at 8294 Doe Avenue, Visalia, CA 93291 (209/651-7777). Incidental and Consequential Damages Excluded: Product repair or replacement and return to the customer is only remedies provided to the customer. Electro-Voice shall not be liable for any incidental or consequential damages including, without limitation, injury to persons or property or loss of use. Some states do not allow the exclusion or limitation of incidental or consequential damages so the above limitation or exclusion may not apply to you. Other Rights: This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

Electro-Voice N/D, PL, BK, and Professional Microphones are guaranteed against malfunction from any cause for two (2) years from the date of original purchase. In addition, the Limited Warranty for the acoustic system contained in these microphones shall apply for the life of the product, defined as a period of ten (10) years from the date that the manufacture of the specific microphone has been discontinued. Any and all active electronics incorporated in these microphones are guaranteed against malfunction due to defects in materials or workmanship for a period of three (3) years from the date of original purchase. The Limited Warranty does not extend to cables, cable connectors, or switches. Additional details are included in the Uniform Limited Warranty statement.
The TYPE 968 is an electronically controllable audio delay line. Used alone, the 968 can produce reel flanging and phase cancellation effects which can be controlled manually or can automatically track the level of the audio signal being flanged. Used in conjunction with an audio console or electronic music synthesizer it can duplicate the doppler frequency shifts from a rotating horn organ speaker, move a sound source in stereo as a function of its changing level, add random phase modulation to synthesized instruments or echo return signals to add subjective depth, produce voltage controlled phase shifts for stereo and quad syntheses, add tremolo to fixed pitch instruments or recorded tracks, and provide many other useful effects requiring phase or frequency modulation of an audio signal.

SIGNAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT IMPEDANCE:</td>
<td>Greater than 10k Ohms.</td>
</tr>
<tr>
<td>OUTPUT IMPEDANCE:</td>
<td>Less than 50 Ohms @ 1kHz.</td>
</tr>
<tr>
<td>CLIPPING LEVEL:</td>
<td>Greater than +12dBm loaded with 600 Ohms.</td>
</tr>
<tr>
<td>DISTORTION:</td>
<td>Max. THD @ 0dBm, 100Hz, 1kHz, 10kHz: 0.05% DIRECT SIGNAL, 0.1% BOTH SIGNALS, 0.2% DELAYED SIGNAL</td>
</tr>
<tr>
<td>FREQUENCY RESPONSE:</td>
<td>3dB down at 25Hz and 25 kHz.</td>
</tr>
<tr>
<td>OUTPUT NOISE:</td>
<td>Less than -85dBm. (25Hz to 25kHz Measurement Bandwidth)</td>
</tr>
<tr>
<td>GAIN:</td>
<td>Unity ± 1dB.</td>
</tr>
<tr>
<td>SIGNAL CONNECTIONS:</td>
<td>Unbalanced, RTS jacks with signal on the Tip, Ring and Sleeve grounded.</td>
</tr>
<tr>
<td>DELAY RANGE:</td>
<td>From 100uS to 30mS.</td>
</tr>
<tr>
<td>CONTROL BANDWIDTH:</td>
<td>1kHz small signal with static delay at 1mS.</td>
</tr>
<tr>
<td>SLEW RATE:</td>
<td>0.5mS/1mS of delay when delay is decreasing, 10mS/1mS of delay when delay is increasing. Measured from 0.5mS to 1.5mS of delay.</td>
</tr>
<tr>
<td>ENVELOPE FOLLOWER:</td>
<td>Audio from SIGNAL INPUT connector is rectified with positive polarity, then averaged with a 1mS attack time and a 100mS release time.</td>
</tr>
<tr>
<td>CONTROL CONNECTION:</td>
<td>TS jack with Envelope Follower output normal to Tip when no plug is inserted.</td>
</tr>
<tr>
<td>MANUAL OPERATION:</td>
<td>With the CONTROL SENS. pot set to ZERO, delay can be adjusted with the DELAY BIAS control.</td>
</tr>
</tbody>
</table>

CONTROL CHARACTERISTICS

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT IMPEDANCE:</td>
<td>Greater than 47k Ohms.</td>
</tr>
<tr>
<td>INPUT SENSITIVITY:</td>
<td>.5 Volt drives delay from 100uS to 30mS with CONTROL SENSITIVITY pot set at MAX.</td>
</tr>
<tr>
<td>INPUT POLARITY:</td>
<td>Positive voltage decreases delay.</td>
</tr>
<tr>
<td>DELAY BIAS RANGE:</td>
<td>Equivalent to ± 2 Volts of control input with CONTROL SENSITIVITY pot set at MAX.</td>
</tr>
</tbody>
</table>

GENERAL DATA

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMENSIONS:</td>
<td>3 1/2" (8.9cm) High, 7" (17.8cm) Wide, 6 1/4" (15.9cm) Deep</td>
</tr>
<tr>
<td>WEIGHT:</td>
<td>3 1/8 lb (1.43kg) With Batteries.</td>
</tr>
<tr>
<td>BATTERY TYPE:</td>
<td>Two 9V Burgess D6, RCA VS306, Eveready 276 or NEDA 1603. One set of batteries is supplied.</td>
</tr>
<tr>
<td>BATTERY LIFE:</td>
<td>Approx. 200 Hours.</td>
</tr>
</tbody>
</table>

COUNTRYMAN ASSOCIATES

424 UNIVERSITY AVE., PALO ALTO, CALIF. PHONE (415) 326-6980
Hi Nicolas

We don't have any more phasers or parts but if you email me your address and promise not to ask for tech support to help you build them, I will send you the circuit.

Carl >
>
-------- Forwarded message --------
Date: Sat, 27 Jan 96 19:32 PST
From: Carl Countryman <carlc@crl.com>
To: Carl Countryman <carlc@crl.com>
Subject: Re: ghosts of phase shifters (fwd)

Hi Mr. Countryman:

> In the mid 1970’s, when I was a composition student of Alvin Lucier at> Wesleyan University, I composed a piece that depended on three of your> Phase Shifters (they were used to vary the pitch of audio feedback). Over> the past two decades I’ve bought and built several phase shift circuits in> an attempt to re-create aspects of that piece in other compositions, but> none have had the right behavior or sound quality. At an AES convention> some years back I asked you if you had any left in the dustier corners of> your stockroom; you laughed, as I recall.
>
> Well, I'm still in pursuit. I've posted 'wanted to buy' notices with a few> newsgroups, but I thought I'd approach you one more time (please forgive my> directness.) Are you sure that you have none, working or dead, that you'd> be willing to sell? If not, is there any chance you would be willing to send> me a copy of the circuit schematic such that might hand-wire three or> four? For my own use only, of course, and I would be very happy to sign> any non-disclosure agreement.
>
> In closing let me mention I am no mere Luddite. I've bought, used, and> recommended most of your subsequent products. But for me as a composer your> Phase Shifter remains a musical holy grail. With many thanks for your> attention, I remain,

> Sincerely,
>
Nicolas Collins
360° video phase shifter uses no transformers

Continuously variable phase-shifting of video-frequency signals over a range greater than 90 degrees usually involves complicated transformers or switching sequences. A much simpler technique, using double-balanced modulators, can provide a continuously variable phase-shifting range of 360° without requiring inductive or mechanical components.

The circuit consists of two double-balanced modulators, with their outputs paralleled. The frequency, ω, whose phase is to be shifted, is applied at one input, and the same signal, shifted in phase by 90°, is applied to the other input. Any output phase angle between 0 and 360° can be selected by the 500-kΩ potentiometers.

The signal currents thus available for mixing in the output loads represent ω, ω/180, ω/90 and ω/270. The amount of each of these currents that are added is determined by the imbalance introduced by the two 500-kΩ potentiometers. Therefore any output phase angle between 0° and 360°, at an amplitude between zero and 10 V peak-to-peak, can be selected by the proper combination of the potentiometer settings.

If the potentiometers are mounted in a “joystick” arrangement, as is used on some oscilloscopes for trace shifting, the joystick attitude can be made to represent the phase and amplitude of the output frequency.

With the use of matched pairs of a suitable transistor, the circuit functions well over the video-frequency range.

Norman Doyle, Design Engineer, Fairchild Semiconductor, Mountain View, Calif.

VOTE FOR 424