
Microcontroller Sound: Additional Projects 
Joseph Kramer 
 
These projects build on the introductory ones included in the book. 
 
CIRCUIT 2: Pseudo-analog effects, tones without delay, and notes quantized to scales. 
 
OVERVIEW 

The following circuit expands on the digital oscillators described in the book by adding a 
second knob and a volume control (via a light-dependent resistor paired with an LED). 
By controlling the brightness of the LED using pulse width modulation (PWM), 
intermediate volume levels can be achieved. The basic principle is explored in the first 
sketch, then expanded in the second sketch using the tone() function. Arrays are 
introduced in the third sketch, allowing for the playback of pre-programmed melodies 
with dynamic volumes. Finally, a simple quantizer is created to constrain notes 
performed via knob turns to desired scales. 
 

 
Figure 3: Fritzing breadboard image of digital oscillator with volume control circuit 



 
Figure 4: Fritzing schematic of digital oscillator with volume control circuit 

 
 

You will need: 
 

• An Arduino Uno. 
• A computer running the Arduino IDE software. 
• A USB cable that can connect from your computer to the Uno’s USB type-B connector. 
• A breadboard. 
• Some solid hookup wire or premade wire jumpers. 
• Assorted resistors (1kΩ – 100kΩ is a good range). 
• A 10kΩ linear potentiometer. 
• A pushbutton or toggle switch. 
• Some photoresistors. 
• Some LEDs (Light Emitting Diodes). 
• An audio amplifier. 
• Assorted jacks and plugs, to match your amplifier. 
• Hand tools. 

 
CONNECT THE HARDWARE 

1. Open the Fritzing file named C1_ButtonOSC.fzz and navigate to Breadboard view 
2. Insert all components into breadboard matching the image 
3. Connect all wires on breadboard 
4. Connect wires from Arduino to breadboard 
5. Visually double-check all connections and wiring 



6. Connect the Arduino Uno to your Computer 
 
 
PROJECT ONE: Volume Control 
Program the Arduino with the VolumeOSC sketch: 

1. Open the Arduino sketch named HEM_VolumeOSC.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S HAPPENING? 
This sketch provides a method for creating analog-like effects using a technique called Pulse 
Width Modulation (PWM). This is done with the analogWrite() function, but is (confusingly) only 
possible on the digital pins. This is because, technically, PWM is still a digital signal. PWM works 
by toggling a pin high and low at a fixed frequency while adjusting the percentage of time that 
the wave is HIGH versus the time it is LOW in order to deliver less current than if the pin were 
just held at a constant HIGH level. This allows the LED to be set to intermediate levels of 
brightness between all the way ON (analogWrite(pin, 255) - PWM signal is HIGH 100% of the 
time), to a medium brightness (analogWrite(pin, 128) - PWM signal is HIGH 50% of the time), to 
all the way off (anlaogWrite(pin, 0) - PWM signal is HIGH 0% of the time). Take note that not all 
of the digital pins can generate PWM. Only the six pins with the tilde (~) symbol next to them 
are capable of this function. 
 
We are using PWM to control the brightness of two LEDs from one pin. One of the LEDs is used 
for visual feedback, while the other is paired with a photocell with the intent to control volume 
with light. The benefit of using PWM is that in addition to simple binary blinking, we are able to 
program the brightness level smoothly from fully bright to completely dark. When using this 
technique to control volume the effect can imperfect (you may hear some of the PWM 
frequency in your signal – this can be improved by using a different microcontroller with a 
higher PWM frequency), but with some finessing of the led-photocell pairings the technique 
opens up fruitful avenues of experimentation. 
 
This sketch uses a button and two knobs to control the activation, pitch, and loudness of an 
oscillator. The knob on pin A0 controls the pitch by setting the period of the waveform via the 
delayMicroseconds() argument. (This method of sound generation is described in an earlier 
project.) When the button is pressed, the knob connected to pin A1 sets the brightness of the 
LED in the photocell/LED pair. This brightness controls the volume of the oscillator via the 
voltage divider created by the photocell and fixed resistor pairing. When the button is released, 
the LED turns off and the note fades out at the photocell’s response speed. You may need to 
experiment with the value of the fixed resistor (1kΩ in the example) to get the best response 
from your photocell. (It may be useful to start with a potentiometer in place of the 1kΩ fixed 
resistor to dial in the value that works best for your photocell/LED pair. The technique for using 
a potentiometer to determine the value of a fixed resistor is described in the book.) 
 
If your photocell causes a fade out due to a slow response time then you are likely to notice 
that the pitch of the oscillator changes when the button is released. This happens because the 



tone is generated by pausing at points in the loop using delays. But delays are not the only 
things that the microcontroller has to do, and each instruction adds time between toggles. This 
means the frequency can be affected by how long it takes for the microcontroller to get 
through the other instructions in the loop. When the button is pressed, the if statement is 
engaged and more lines of code have to be executed by the microcontroller compared to when 
the button is not pressed. As a result, there is more time between the pin going LOW and the 
pin going HIGH again. This lowers the pitch of the microcontroller slightly when the button is 
down. One approach to stabilizing the frequency is to make sure that the if statement and the 
else statement take the same amount of time by moving some instructions out of that structure 
and into the main loop. But a better way to handle this issue would be to do away with the 
delay() method of tone generation altogether and instead make use the tone() function built 
into the Arduino library.  
 
 
PROJECT TWO: Volume Control with Improved Timing via tone()  
Program the Arduino with the VolumeOSC_tone sketch: 

1. Open the Arduino sketch named HEM_VolumeOSC_tone.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S HAPPENING? 
Using the tone() function eliminates the need to employ the cumbersome delay() function for 
our audio task. To start a note using tone() we will call the function and pass it two arguments: 
which pin, and what frequency. If we want stop the tone, we can call the complementary 
function noTone() which will take one argument to clarify which pin to silence. The tone() 
function can produce frequencies from about 31Hz to nearly 5kHz. The map() function is used 
here to select a range from 110Hz to 1760Hz. These numbers were chosen by ear and can be 
adjusted to taste. For more ways to use tone() see the built-in examples at 
File>Examples>Digital>[tone…]. 
 
Keeping the audio generation free of delays frees us to do useful things in the rest of the loop 
without affecting the pitch of the oscillator. Examples of useful things might include blinking 
lights, reading sensors, moving through sequences of notes, etc. This is demonstrated using this 
circuit and the tone() function to create a simple note sequencer in the next project. 
 
 
PROJECT THREE: Stored Melodies with Dynamics 
Program the Arduino with the ToneSEQ sketch: 

1. Open the Arduino sketch named HEM_ToneSEQ.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S HAPPENING? 
What you should hear is a repeating sequence of notes that play at different volumes. Turning 
one knob will change how quickly the notes are played and the other knob will change the 



number of notes in the sequence. Hold the button will cause the sketch to output an alternate 
sequence of notes. 
 
This sketch makes use of iteration and arrays. We created this list of tones in a data structure 
called and array. The array is declared at the start of the code just like any other variable. Start 
by writing the data type, followed by a space and then a name of our choosing. This name is 
followed immediately by brackets enclosing a number that represents how many items will be 
in our array. If the number in the brackets is 16, then we would follow that with a list of 16 
values, separated by commas, and enclosed in curly braces.  End the line with a semicolon.  
 
To access a value from the list, type the name of the array with the number of the item in the 
brackets. This is known as the index of the array. Note that counting starts at zero, so the index 
of the first value is 0, and the index of the last item is the number of items minus one. We 
created the variable “i” which we will use to select items from the list. 
 
The variable “i” is used in this case to keep track of which number to pass the tone() function 
from a list of tones. We iterate, or count up through the list, by adding one to the variable “i” 
each time we go through the loop. The instruction i++; tells the program to add 1 to the current 
value of i. When we get to the last numbered item, we reset “i” to zero to start again at the 
beginning of the array.  
   

if (i > stepNum) { 
    i = 0; 
  } 

 
The list of volumes is stored in a simple array. This is a list of PWM values between 0 – 255 used 
to control the brightness of an LED. The list of tones, called “thisTone[][]” in the code,  uses a 
two-dimensional array. This allows us to pick our notes from one of two lists in order to allow 
for alternate melodies. The array has two sets of brackets which can be thought of as 
representing rows and columns, respectively. A number in first bracket will select the row, or 
which list to play tones from. A number in the second bracket will select which tone to play 
from the selected list. The numbers in the lists represent the rough frequencies of different 
pitches. For a list of the pitches see the example files in Arduino at 
File>Examples>02.Digital>toneMelody.  There is a second tab in that sketch window called 
pitches.h which lists available values. Alternatively, search the internet for the frequencies of 
musical notes. 
 
To play the notes, call the tone() function and provide it with two arguments: which pin to play 
the tone on, and what frequency to play. Calling the following line of code will play 880 (note 
A5), the first tone from the first list: 

 
tone(ledPin, thisTone[0][0]); 
 

To play the tone 659 (E5), the 5th item on the 1st list, you would call: 
 



tone(ledPin, thisTone[0][4]); 
 
There are only two built-in sequences in this array, but you can experiment with adding more. 
To create a third list, simply change the number in the first bracket of the variable declaration 
at the top of the code from 2 to 3 and create a new list of numbers. Here is an example: 

 
//create an array to store frequencies 
int thisTone[3][8] = { 
  {880, 41, 33, 494, 659, 1047, 62, 73}, 
  {41, 33, 33, 494, 247, 880, 880, 73}, 
  {659, 1047, 1047, 1047, 659, 1047, 1047, 1047}, 
}; 

 
This simple sequencer has many possible variations and could be used to code longer melodies 
or even entire songs. Another avenue of experimentation would be to lose the notes entirely 
and only keep the volume control.  Connecting an audio jack to the photocell volume control 
instead of the internal oscillator would allow for the creation of a programmable audio slicer. 
Alternatively, the note arrays could be kept, but the stepping function removed and the code 
revised to play tones and volumes selected by knobs or some other novel controller. For 
example, a quantized Theremin-like instrument could be created using distance sensors to 
select pitches and volumes. The next example will walk through the creation of a simple tone 
quantizer. 
 
 
PROJECT FOUR: Quantizer for Digital Oscillator 
Program the Arduino with the ToneQUANTIZER sketch: 

1. Open the Arduino sketch named HEM_ToneQuantizer.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S HAPPENING? 
What you should observe is that pressing the button causes the light to turn on and a note to 
be played. Releasing the button turns off the LED and silences the note. Turning the note knob 
(on pin A0) will cause the pitch of the note to change. Rotating the knob from one end to the 
other will play through the entire selected scale. Turning the second knob will change the type 
of scale that is selected. In this example, the scales are chromatic, major, natural minor, major 
pentatonic, and minor pentatonic. (Though many other scales are possible.)  
 
A quantizer takes a set of incoming values and maps them to a desired set of outgoing notes. In 
this case, the incoming values are just a range of numbers that result from our program reading 
a knob (the 10-bit analogRead() reports a range of numbers between 0 – 1023). The desired 
outgoing notes of our quantizer will be selected from a list of frequencies belonging to the 
same musical scale. These frequencies will be passed to the tone() function. It is a bit like sliding 
one’s finger across only the white keys of a piano to play C major. Only this implementation of a 
quantizer is able to select from a large number of different keys and scales. 
 



To understand how this is accomplished, we will start by examining the tone() function. As 
discussed in previous examples, the tone() function takes two arguments: 1. which pin to play 
the tone on, and 2. the frequency of the tone to produce. The frequencies that the function can 
produce are limited to the relatively wide range of 31Hz (note B0) to 4,978Hz(D#8). When 
tone() was used in previous examples, a knob was read and the value (0 – 1023) was mapped to 
some desired range within that 32 – 4987 Hz limit. Consider the following code fragment: 
 

int rawNote = analogRead(noteKnob); 
int frequency = map(rawNote, 0, 1023, 31, 4978); 
tone(tonePin, frequency); 

 
With this example, turning the knob would result in a relatively smooth slide between pitches, 
with many octaves being moved through on the low range of the knob, and only about one high 
octave spread across the whole right-hand side of the knob. This is pretty classic oscillator 
behavior and certainly great fun, but it can be pretty difficult to play a specific note. 
 
To spread the frequencies more evenly across the knob range, and only play notes that roughly 
correspond to notes in Western music, an array is defined. The first array, chromaticScale[89], 
is a large list of every possible note in 12-tone equal temperament that the tone() function is 
capable of producing. There are 89 frequencies in the list that correspond nearly, but not 
exactly, to the frequencies of the notes on a standard modern piano. (The range of a grand 
piano is very slightly different, and most notes in Western music have frequencies with decimal 
point components which tone() is not capable of producing.) If all we wanted was a chromatic 
scale, we could simply read an analog input and scale the result from the analogRead range of 0 
– 1023 to the chromaticScale[89] range of 0 – 88 using the map() function. Using the output of 
that map function as the index of the chromaticScale[89] array would allow us to directly select 
from that list of notes. The code fragment below would quantize our oscillator to only play 
notes from the chromatic scale: 
 

int rawNote = analogRead(noteKnob); 
int pitchNum = map(rawNote, 0, 1023, 0, 88); 
note = chromaticScale[pitchNum]; 
tone(tonePin, note); 

 
It would be possible to just hard code arrays for every possible scale we wanted to play, but it 
would be impractical to create such lists for all desired scales. To accommodate a more flexible 
system that can be used to select different scale types (like major, minor, pentatonic, etc) and 
different tonics (for example A, Bb, F#, etc) this example implements a set of masks. These 
masks are arrays of index values for given scales, and offsets for given tonics and octaves. The 
numbers in the majorMask[ ] array, for example, contain the index values for the first octave of 
the B major scale if applied directly to the chromaticScale[ ] array. The tonicMask[ ] is a bit 
unnecessary as it is a simple sequence, but it would allow for more flexible access to the notes 
if a different system was desired. 
 



Our first scale, the chromatic scale, is the easiest to understand as it just plays through each 
possible note, starting with the root and ending with the root an octave above. So to play one 
octave of a chromatic scale in the key of B, we just need to pass the chromaticScale[89] array 
an index value from 0 – 12. If we wanted to shift the root from B to C in order to play a C scale, 
we would just add one to each item in the index, causing the output to play notes 1 – 13. If we 
wanted to shift to a root of F, we would add 6 (notes 6 – 18). The code fragment below would 
play one octave of the F chromatic scale: 

 
int root = 6;  
int rawKnob = analogRead(noteKnob); 
int degreeIndex = map(rawKnob, 0, 1023, 0, 12);  //this maps the knob so it only reads one octave of  
pitchNum = degreeIndex + root; 
note = chromaticScale[pitchNum]; 
tone(tonePin, note); 

 
In this case, our knob gets mapped to a variable with a range of 0 – 12, and the instruction 
pitchNum = degreeIndex + root; just adds a 6 to each degreeIndex value. pitchNum is then used 
as the index of the chromatic scale array. This causes the notes that get played to be shifted up 
in the list by 6. This simple mechanism allows us to use the one large list of notes to generate a 
chromatic scale of any number of octaves starting at any note.  
 
To get a different octave, we can add an octave mask. New octaves are 12 index values apart. 
So, if we want to start on the first octave, we add an offset to the index of zero. For the next 
octave, we add an offset of 12. Next, an offset of 24, and so on. We can add the octave offset as 
follows: 

 
cost byte octaveMask[] = {0, 12, 24, 36, 48, 60}; 
int root = 6;  
int octave = 2; 
int rawKnob = analogRead(noteKnob); 
int degreeIndex = map(rawKnob, 0, 1023, 0, 12);  //this maps the knob so it only reads one octave of  
pitchNum = octaveMask[octave] + degreeIndex + root; //this gives the octave, scale degree and root 
note = chromaticScale[pitchNum]; 
tone(tonePin, note); 

 
Try different values of root and octave to hear different chromatic scales at different octaves. 
You can also try adding knobs to directly select the octave and the root by reading knobs and 
mapping their values to desirable ranges. 
 
The second knob in this example, however, is used to select from a set of 5 different scale 
types. Each of these scale types has a unique mask that can be used to pick appropriate notes 
from the main chromatic scale array using the simple shifting and masking techniques 
described so far. 
 
Using the example of a C major scale to illustrate how this works may help circumvent too 
much discussion about music theory (though a thorough understanding of that subject may 



help with comprehension and expanding the available scale types). The C major scale starts on 
the note C and only includes the white keys. The index values of the white keys starting on C 
are 1, 3, 5, 6, 8, 10, 12, and 13 brings us back to C. (figure 2)  
 
 

 
Figure 5: Piano keyboard with note names and index values 
 
 
To make a mask for C Major, we would simply use those numbers as the index of our chromatic 
scale array. To use a knob to play through the first octave of C Major, we could use the 
following code fragment: 
 

const byte octaveMask[] = {0, 12, 24, 36, 48, 60}; 
const byte cMajorMask[8] = {1, 3, 5, 6, 8, 10, 12, 13}; 
 
int octave = 2; 
int rawKnob = analogRead(noteKnob); 
int i = map(rawKnob, 0, 1023, 0, 7);  //note, only 8 notes in one octave of a major scale 
int degreeIndex = cMajorMask[i]; 
pitchNum = octaveMask[octave] + degreeIndex; //this gives the octave, scale degree and root 
note = chromaticScale[pitchNum]; 
tone(tonePin, note); 

 
 
It would again be impractical to make a mask for every possible major scale at every tonic. So, 
we need to adjust this mask to make it usable for major scales starting on any note. To do that, 
we need to make the mask start at zero. That way the scale with a root of C is accessed by using 
the degree index plus a root offset of 1. So, if we subtract one from each item in the array, we 
get a major scale mask that starts at zero and can be offset to start at any note by changing the 
root value, just like the chromatic scale mask in the previous illustration. The resulting fragment 
will play a C major scale at the third octave. Change the root and octave to hear other major 
scales. 
 

const byte octaveMask[] = {0, 12, 24, 36, 48, 60}; 
const byte majorMask[8] = {0, 2, 4, 5, 7, 9, 11, 12}; 



 
int root = 1;  
int octave = 2; 
int rawKnob = analogRead(noteKnob); 
int i = map(rawKnob, 0, 1023, 0, 7);  //note, only 8 notes in one octave of a major scale 
int degreeIndex = majorMask[i]; 
pitchNum = octaveMask[octave] + degreeIndex + root; //this gives the octave, scale degree and root 
note = chromaticScale[pitchNum]; 
tone(tonePin, note); 

 
The rest of this code establishes arrays for alternative scales and uses if statements to select 
from among the scales and respond to button presses. For more info on how if statements 
work, see earlier examples or check out the documentation built into Arduino’s IDE and on the 
web. 
  
This quantizer is a useful proof of concept and can be included in other projects to make 
flexible and performable interfaces. Quantizers can be particularly useful when connecting the 
microcontroller hardware to other digital instruments using MIDI (Musical Instrument Digital 
Interface). MIDI divides the frequency space into MIDI note numbers, which can be packed up 
in array and called using the same basic mechanism described here. 
 
CIRCUIT 3: Four Digital Outputs for Rhythm Generation and Noisy Swarms 
 
OVERVIEW 

The following circuit creates four individual patterns of pulses visualized by four LEDs. 
Different patterns can be selected for the four channels using a potentiometer. The 
speed of the blinking is controlled by a second potentiometer and the length of the 
individual blinks are controlled by a third. These four channels are attached to four 1/8” 
output jacks that can be connected to other circuits to be used as gate signals (0v - +5V 
range) or connected to a mixer and used as linked polyphonic audio channels.  

 

 
Figure 6: Fritzing breadboard image of rhythm generation circuit 



 

 
Figure 7: Fritzing schematic of rhythm generation circuit 

 
 
You will need: 
 

• An Arduino Uno. 
• A computer running the Arduino IDE software. 
• A USB cable that can connect from your computer to the Uno’s USB type-B connector. 
• A breadboard. 
• Some solid hookup wire or premade wire jumpers. 
• At least 4 100Ω resistors and at least 4 1kΩ resistors 
• At least 4 LEDs (Light Emitting Diodes). 
• An audio amplifier. 
• Some kind of circuit that can respond to 5-volt gates/triggers.  
• Assorted jacks and plugs, to match your amplifier. 
• Hand tools. 

 
CONNECT THE HARDWARE 

1. Open Fritzing File named C3_QuadQATES.fzz and navigate to Breadboard view 
2. Insert all components into breadboard matching image 
3. Connect all wires on breadboard 
4. Connect wires from Arduino to breadboard 
5. Visually Double-check all connections and wiring 



6. Connect the Arduino Uno to your Computer 
 
 
PROJECT FIVE: Quad Gate Generator 
Program the Arduino with the QuadGATES sketch: 

1. Open the Arduino sketch named QuadGATES.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S HAPPENING? 
In this circuit, each of the four signal outputs are toggled HIGH and LOW by pre-programmed 
patterns (as visualized by the 4 LEDs). In the example, each of the four channels has 5 selectable 
patterns of 16 beats each. (There could be any number of patterns or beats, though.) There are 
three knobs that control the following: the speed of stepping, which pattern is selected for all 
channels, and how long each blink lasts in each step (When the blink time is all the way up, 
adjacent blinks tie together for longer notes). 
 
The code starts with variable declarations as described in the comments within the code itself.  
 
The setup() function repeats the instruction pinMode(pin, OUTPUT); four times to set each of 
the pins for the four channels to function as outputs.  
 
The loop() is relatively short with the first three instructions reading the three knobs and storing 
those values in variables.  
 

  //Read Knobs and store raw values 
  int clockRaw = analogRead(clockKnob); 
  int patternRaw = analogRead(patternKnob); 
  int lengthRaw = analogRead(lengthKnob); 
 

Then three more lines map those three variables to desired ranges for the speed, pattern 
number, and pulse length parameters.  
 

  //Scale Raw values to desired ranges using the map() function 
  stepTime = map(clockRaw, 0, 1023, 1000, 30); //set a clock from 1000ms between beats to 30ms  
  patternNum = map(patternRaw, 0, 1010, 0, PATTERN_COUNT - 1); //select from patterns numbered 0 - 4 
  trigLength = map(lengthRaw, 0, 1023, 5, stepTime); //select trig lengths from 5ms to a full beat length 
 

Note that the stepTime variable is mapped to a range of 1000ms to 30ms. These values were 
chosen to taste. Experiment with by changing the last two numbers of the map() function to 
find a desirable range. Making the numbers larger will allow for slower tempo settings. Setting 
both numbers shorter will create noisy oscillator effects if channel outputs are connected to 
your mixer and amplified speaker. 
 
CUSTOM FUNCTION 1: stepper() 



The first major new concept in this code appears as a short instruction near the middle of the 
loop(): 
 
 stepper(stepTime); 
 
stepper() is not a built-in function of the Arduino language. This is a custom function that is 
created in this sketch. Custom functions are used relatively frequently and can be a convenient 
way to batch chunks of code into reusable pieces. I recommend heading over to the Arduino 
website’s reference on custom functions to look at their structure as you explore this next bit of 
description.  
 
The stepper() function definition happens after the end of the loop function. It appears as 
follows: 
 

//master timer function keeps track of which beat to play and keeps a running timer 
void stepper(unsigned long stepDur) { 
  static unsigned long previousTime = 0; 
  counter = millis() - previousTime;  //counter counts up from 0 to whatever the step time has been set to 
 
  if (counter >= stepDur) { //if the counter reaches the stepTime, do the following: 
    beat++;             //increment the beat by one 
    previousTime = millis(); //update previousTime to right now 
    if (beat > 15) {      //if the beat reaches 16, start over at 0 
      beat = 0; 
    } 
  } 
} 

 
This function starts with a data type declaration (just like variable declarations). This one is 
declared “void”. That means that whatever this function does, it is not going to report any new 
number for our sketch to use. Then we get to choose a name, in this case, “stepper”.  
 
Now, our function can have as many arguments as we want. These are parameters that we 
might want to be able to change while our loop is running. Just like tone() has an argument for 
the pin, and an argument for the frequency, we gave stepper() an argument for the step time 
(kind of like the delay time in the earlier Blink sketch, but better). By defining this parameter, 
we are enabling the stepping speed to be changed dynamically by sending it the value of a knob 
or some other input sensor.  
 
Since we are going to use this to keep track of time, we declare the argument’s data type as an 
unsigned long, and choose the name “stepDur”, for step duration.  Note, when we create 
arguments for custom functions, they must be declared just like variables, but they have to be 
unique to the function. We can’t use a variable we already declared and pass that value. We 
have to make something new just for this function. To use this argument, we will add stepDur 
to an instruction later in the body of the function. 
 



Next an open curly brace starts the body of the function. The first thing that happens in the 
function is the declaration of a variable called previousTime.  
     

 static unsigned long previousTime = 0; 
 
We will use this variable to keep track of what the time was when we last took a step. This is 
critical to creating a time-base for our project without using delay(). This variable is an unsigned 
long because we are keeping track of the number of milliseconds since the project was 
powered on. This number will get quite large, and unsigned longs can store numbers just past 
four million. One thing that is new and noteworthy about this variable declaration is that it is 
declared as static. This is important, because this function gets activated (or called) each time 
the stepper() appears in the loop (including every time the loop repeats, which could be 
thousands of time per second). Each time a variable declaration happens, even declarations in 
custom functions, the variable gets set to the number it is listed as being equal to - in this case 
0. However, we don’t want to reset to 0 every time the function is called, so the word static 
tells the function not to reinitialize, or reset, the value of this variable every time the function is 
called. 
 
In the next line the variable “counter” is used to store the number of milliseconds since the last 
step. It is a global variable, meaning it was declared at the beginning of the code, outside of any 
functions. This allows it to be used in any function in the body of the sketch. We update it here, 
and we check it in other functions.  
 

    counter = millis() - previousTime;   
 
millis() is a function that returns the number of milliseconds since the program began. So 
millis() can be thought of as the current clock time. In the above line of code, the current clock 
– previousTime (which was set to zero at the start), will equal the current clock and it will 
continue to increase the number of counter until something causes previousTime to be 
updated. 
 
The rest of the function happens in the following if statement: 
 

    if (counter >= stepDur) { //if the counter reaches the stepTime, do the following: 
      beat++;             //increment the beat by one 
      previousTime = millis(); //update previousTime to right now 
      if (beat > 15) {      //if the beat reaches 16, start over at 0 
        beat = 0; 
      } 
    } 

 
Here is where we use the stepDur argument. This statement checks to see if the counter (the 
running tally of the number of milliseconds since the last step) is greater than or equal to the 
stepDur argument that we passed to the function. If so, another global variable called “beat” 



increments up by one (beat++;). Then our static variable previousTime gets set equal to the 
current program time in the line: 
 

      previousTime = millis(); //update previousTime to right now 
  
This is how the counter will keep track of the time since the last step. Consider the following 
case: The device has just powered on and the program just started. millis() is counting up from 
zero. If our stepDur is 1000, then once the counter gets up to 1000, the beat variable will 
increase by one and then the above line of code will set previousTime equal to 1000. Since 
millis() just keeps counting up forever, the next time the function gets called it will be at some 
value greater than 1000, let’s say 1002. Recall: 

  
   counter = millis() - previousTime;   
 

If millis() is at 1002 and previousTime is at 1000, then the counter is now back down at 2 and 
ready to count back up to stepDur before resetting again. Counter is always the difference 
between the time now and the time of the last step. This is how we keep track of time without 
using the delay() function blocking all our code. 
 
The last thing in our stepper function is inside of the previous if statement: 
 

      if (beat > 15) {      //if the beat reaches 16, start over at 0 
        beat = 0; 
      } 
 

The beat variable is going to be used to step through an array of 16 beats. Index values of 0 – 15 
will address each beat in a pattern. This line of code says that if the beat is greater than 15, 
start over at 0. If patterns had 32 beats, this would be modified to read (beat > 31). 
 
CUSTOM FUNCTION 2: trigger() 
After the definition of the stepper function, a new custom function called trigger() is defined. 
This tells our program what to do at each of the four outputs.  
 

//Custom Function to produce outputs of different lengths 
//The switch…case structure looks for which Output number ("out") 
//then assigns a pattern number(patternNum) from a 2D array 
//then keeps track of how long to keep the Output HIGH by comparing the trigLength ("dur") to the  
//current time of the counter - which is updated each time through the loop by the "stepper()" function 
void trigger(int out, int patternNum, int dur) { 
  switch (out) { 
    case 1: //if the first argument ("out") is "1", do the following: 
      //check to see if the counter is less than the note length 
      //AND (&&) that the pattern indicates a "1". If so, write the output HIGH to 5V 
      if (counter < dur && gateOnePatterns[patternNum][beat] == 1) { 
        digitalWrite(out1, HIGH); 
      } 
 



      else if (gateOnePatterns[patternNum][beat] == 0) { 
        digitalWrite(out1, LOW); 
      } 
 
      //if the above cases are not true, and the trigLength is equal to the step length, 
      //don't turn the gate off at the end of the step. This will create a tie between adjacent "1"s 
      //in a pattern when the length knob is turned all the way to maximum 
      else if (stepTime == trigLength) { 
        //if the gate duration is all the way up, don't toggle the gate LOW 
      } 
 
      //in any other case, write the gate LOW once the counter passes dur 
      else { 
        digitalWrite(out1, LOW); 
      } 
      break; 
 
    case 2: 
      if (counter < dur && gateTwoPatterns[patternNum][beat] == 1) { 
        digitalWrite(out2, HIGH); 
      } 
 
      else if (gateTwoPatterns[patternNum][beat] == 0) { 
        digitalWrite(out2, LOW); 
      } 
 
      else if (stepTime == trigLength) { 
        //if the gate duration is all the way up, don't toggle the gate LOW 
      } 
      else { 
        digitalWrite(out2, LOW); 
      } 
      break; 
 
    case 3: 
      if (counter < dur && gateThreePatterns[patternNum][beat] == 1) { 
        digitalWrite(out3, HIGH); 
      } 
 
      else if (gateThreePatterns[patternNum][beat] == 0) { 
        digitalWrite(out3, LOW); 
      } 
 
      else if (stepTime == trigLength) { 
        //if the gate duration is all the way up, don't toggle the gate LOW 
      } 
      else { 
        digitalWrite(out3, LOW); 
      } 
      break; 
 
    case 4: 
      if (counter < dur && gateFourPatterns[patternNum][beat] == 1) { 



        digitalWrite(out4, HIGH); 
      } 
 
      else if (gateFourPatterns[patternNum][beat] == 0) { 
        digitalWrite(out4, LOW); 
      } 
 
      else if (stepTime == trigLength) { 
        //if the gate duration is all the way up, don't toggle the gate LOW 
      } 
      else { 
        digitalWrite(out4, LOW); 
      } 
      break; 
 
    default: 
      break; 
  } 
} 

 
The trigger() function is declared void because it doesn’t report any number back to the sketch. 
The three arguments are integers named “out”, “patternNum”, and “dur”. An open curly brace 
indicates the start of the body of the function. 
 

void trigger(int out, int patternNum, int dur) { 
 
The out argument will be a number that specifies which output channel the function should be 
controlling. patternNum tells the function which of the channel’s 5 patterns to read from. And 
dur will tell the function how long to keep the channel’s output HIGH when the pattern array 
shows a 1.  
 
The function uses a switch…case control structure to decide which portion of the code to 
execute. The first argument, out, is used to control which case gets activated within the switch 
structure. Since each of the four cases in the switch are identical (except for which channel they 
act on), we will just examine what happens in the first case. The main loop of the sketch ends 
with four calls to the trigger() function:   
 

 //write outputs high and low with custom function: trigger() 
  trigger(1, patternNum, trigLength); 
  trigger(2, patternNum, trigLength); 
  trigger(3, patternNum, trigLength); 
  trigger(4, patternNum, trigLength); 

 
Since each of these passes a different number to the first argument, each will activate a 
different case in the switch structure. We will examine the first call:  
 

trigger(1, patternNum, trigLength); 
 



In this call, out is equal to 1, which will activate the first, and only the first, case of our switch. If 
out were equal to 2, it would activate the second case in our switch. Out = 3 would activate the 
third case, and out = 4 would activate the fourth case.  
 

switch (out) { 
    case 1: //if the first argument ("out") is "1", do the following: 
      //check to see if the counter is less than the note length 
      //AND (&&) that the pattern indicates a "1". If so, write the output HIGH to 5V 
      if (counter < dur && gateOnePatterns[patternNum][beat] == 1) { 
        digitalWrite(out1, HIGH); 
      } 
 
      else if (gateOnePatterns[patternNum][beat] == 0) { 
        digitalWrite(out1, LOW); 
      } 
 
      //if the above cases are not true, and the trigLength is equal to the step length, 
      //don't turn the gate off at the end of the step. This will create a tie between adjacent "1"s 
      //in a pattern when the length knob is turned all the way to maximum 
      else if (stepTime == trigLength) { 
        //if the gate duration is all the way up, don't toggle the gate LOW 
      } 
 
      //in any other case, write the gate LOW once the counter passes dur 
      else { 
        digitalWrite(out1, LOW); 
      } 
      break; 

 
Case 1: starts with an if statement control structure. When activated, the body of this if 
statement toggles output 1 HIGH. This will only execute if the conditional statement in the 
parenthesis is true. In this case, the “AND” boolean operator, “&&”, indicates that the two 
conditions must both be true in order for this statement to execute and the output to be 
toggled HIGH.  
 
First, “counter < dur” indicates that the counter must be less than the dur variable (which is the 
argument we pass to the function to tell how long to keep an output HIGH). This is how we are 
able to set the length of the output pulses. If the counter is greater than the desired pulse 
duration, the output will not be toggled HIGH).  
 
Second, “gateOnePatterns[patternNum][beat] == 1” looks at the array for channel one to see if 
the current beat is a one. Consider the gateOnePatterns array: 

 
bool gateOnePatterns[][16] = { 
  {1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, 
  {1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, 
  {0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1}, 
  {1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0}, 
  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 



}; 
 
Our conditional statement looks for a one in the current beat of the current pattern. 
patternNum is an argument that gets passed into the function from the main loop. The variable 
is set in the loop by the following instruction: 
 
   patternNum = map(patternRaw, 0, 1023, 0, PATTERN_COUNT - 1); //select from patterns numbered 0 - 4 
 
This variable will be mapped from a knob reading range of 0 -1023 to the index range of our 
array. Since there are five patterns, we select from each of the rows by passing a number 
between 0 – 4 to the first bracket of the array. If patternNum == 2, we are looking at the third 
row of values, for example.  
 
The variable “beat” in the second bracket position of the array tells us which item in the row we 
want to examine. “beat” gets set by the stepper() function. As an example, if patterNum is 
equal to 2 and beat is equal to 9, we are looking for the 10th item in the 3rd row, which is a 0 (in 
bold below). In this case, the channel would not be toggled high and the relevant line of code 
will be executed. 
 

bool gateOnePatterns[][16] = { 
  {1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, 
  {1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, 
  {0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1}, 
  {1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0}, 
  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 
}; 

 
The next part of case 1 is a an else if statement. This is just like an if statement, except that it 
must follow another if statement and will only be evaluated if the previous if statement 
conditions are not met. This else if statement toggles the gate low if the step is a zero. In our 
previous example, the beat was a 0, so this is the statement that would be activated and the 
conditional statements that follow would be ignored. A beat of 0 will always toggle the output 
LOW. 
 

      else if (gateOnePatterns[patternNum][beat] == 0) { 
        digitalWrite(out1, LOW); 
      } 

 
Next, we have another else if statement. This one would only be evaluated if the current beat 
was a 1 and the counter was less than the dur variable. It states that if the stepTime is equal to 
the trigger length, don’t do anything. This is really just here to block the final else statement 
that follows. This will have the effect of tying together multiple adjacent 1s by keeping the 
output from being toggled low at the end of every step. 
 

      //if the above cases are not true, and the trigLength is equal to the step length, 
      //don't turn the gate off at the end of the step. This will create a tie between adjacent "1"s 



      //in a pattern when the length knob is turned all the way to maximum 
      else if (stepTime == trigLength) { 
        //if the gate duration is all the way up, don't toggle the gate LOW 
      } 

 
The final part of the first case is the else statement and case break. 
 

      //in any other case, write the gate LOW once the counter passes dur 
      else { 
        digitalWrite(out1, LOW); 
      } 
      break; 

 
This else statement says that if none of the above are true, then toggle Output 1 LOW. 
Specifically, this is useful in cases where the pattern indicates a one, but the counter has 
become greater than the step duration. This will set the output low where it will stay until next 
time a 1 shows up in the pattern. 
 
The break command tells the program not to look at any other cases and to leave the switch 
and do whatever comes after it. In this case, there is nothing else in the function, so the 
program leaves this function and heads back into the loop to execute the next instruction.  
 
The final three instructions in the loop are just calling the trigger() function again, but each time 
it is looking at the next pattern array and toggling the next output channel. Since each of these 
trigger() calls are being passed the same variables for pattern number and the trigger length, 
they will seem strongly correlated and patterns may start to feel recognizable. More complex 
behavior can be generated by mixing and matching from different pattern numbers for 
different channels, and by changing how long triggers last for different channels. Simply read 
more knobs and map them to individual variables to be used as arguments for each of the 
different trigger() calls. For example, the six analog inputs of the Arduino could be set up as 
follows: 
 
Knob on A0 will still control the stepping speed. 
Knobs on A1 – A3 can be used to select different patterns for channels 1, 2, and the 3 and 4 
channels can change together based on the A3 knob. 
Knobs A4 and A5 can each select different trigger lengths and be used to alter channels 1+3 and 
2+4 respectively.  
 
Then the calls to trigger might look something like the following: 
 

  trigger(1, patternNum1, trigLength1); 
  trigger(2, patternNum2, trigLength2); 
  trigger(3, patternNum3, trigLength1); 
  trigger(4, patternNum3, trigLength2); 

 



Using a microcontroller with more analog inputs, like the Arduino Mega, would allow unique 
knob control for each parameter. It is also worth mentioning that choosing 4 output channels 
was a relatively arbitrary decision. It is certainly possible to have more or fewer. Experiment to 
find the most suitable arrangement for your application. 
 
If you don’t have a modular synthesizer lying around, consider connecting these outputs to 
inputs of some of the circuits from the book. For example, this project pairs well with the 4093 
NAND-based oscillators from an earlier chapter in the book. Connecting this project’s outputs 
to one of each of the four oscillator inputs of the 4093 can create a dynamic polyphonic tone 
generator. In fact, many of the CMOS projects from the book will work great with Arduino 
provided you power the chips from the 5-volt pin of the UNO. If you have 9V CMOS synths, you 
can probably control them safely with the output of this circuit, but you wouldn’t want to send 
anything back to the Uno from your synth – even by accident. Beware, applying more than 5 
volts to any of the Uno’s analog or digital pins risks damage to your system. 
 
 
CIRCUIT 4: Basic Step Sequencing Using Delay 
 
OVERVIEW 

The following circuit uses multiple digital output pins to send manually-controlled 
voltages to an external voltage-controlled oscillator. This project is broken up so that 
functions are added over the course of several examples. This first example shows the 
basic mechanism for stepping through the outputs, activating one output at a time. 
Additional examples will modify this code to include a built-in oscillator and then a 
speed control knob.  

 

 
Figure 8: Fritzing breadboard image of basic step sequencer 

 



 
Figure 9: Fritzing schematic of basic step sequencer 

 
You will need: 
 

• An Arduino Uno. 
• A computer running the Arduino IDE software. 
• A USB cable that can connect from your computer to the Uno’s USB type-B connector. 
• A breadboard. 
• Some solid hookup wire or premade wire jumpers. 
• 10 1kΩ resistors. 
• 9 10kΩ linear potentiometers. 
• 8 LEDs (Light Emitting Diodes). 
• 8 small signal diodes, such as 1N914. 
• An audio amplifier. 
• 2 jacks and plugs, to match your amplifier. 
• Hand tools. 

 
CONNECT THE HARDWARE 

1. Open Fritzing File named C4_SEQwithDELAY.fzz and navigate to Breadboard view 
2. Insert all components into breadboard matching image 
3. Connect all wires on both breadboards 



4. Connect wires from Arduino to breadboards 
5. Visually Double-check all connections and wiring 
6. Connect the Arduino Uno to your Computer 

 
 
PROJECT SIX_A: Basic Step Sequencing Using Delay 
PROGRAM THE ARDUINO with the Programmable_Sequencer_A sketch: 

1. Open the Arduino sketch named HEM_Programmable_Sequencer_A.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S HAPPENING? 
This code functions in a very similar way to the ToneSEQ sketch in that it uses iteration to count 
through an array, so that at each new step of the array a new note can be played. (Though this 
first example will only produce notes if connected to an external voltage-controlled oscillator 
(VCO) via the CV output jack). One major difference between the ToneSEQ example and the 
project here is that this array does not include a list of notes, it instead includes a list of digital 
pins that are each toggled HIGH then LOW in turn. These pins are connected through resistors 
to LEDs that will light to indicate the current active step. The pins are also connected through 
potentiometers (knobs) that are manually adjusted so that each step will produce a different 
voltage (between 0 and about 5 volts). When a step is active, the potentiometer will have 0 
volts on one end and 5 volts on the other. The knob can select any voltage in between 0 and 5 
volts. When a step is inactive, it will have 0 volts on both ends, so the knob stays at zero volts 
regardless of its position. Each potentiometer’s wiper (this is the center leg – it acts as a kind of 
output in our scenario) is tied together (each goes through a diode first so that they will not 
interfere with each other) and that junction is connected to the CV output jack and the Uno’s 
own analog input pin #5.  
 
The code starts by making sure that the step number it is going to turn on is within the range of 
the array: 
 

  if (stepNum > 7) { 
    stepNum = 0;  //"0" is the first note, "1" is the second, and so on 
  } 

 
Since the code starts with stepNum = 0, this if statement is not activated the first several times 
through the loop. 
 
The code turns selected steps on (HIGH) and off (LOW) in the middle of the loop: 
 

//this is where the step gets turned on, the code paused, and then the step turned off again 
digitalWrite(steps[stepNum], HIGH); //toggle selected pin (stepNum[0] = 9) to 5v (step 1 turns on) 
delay(stepTime);                 //pause code for pre-determined number of milliseconds 
digitalWrite(steps[stepNum], LOW);  //toggle selected pin to 0v (step 1 turns off) 
 



Each time through the loop, the digitalWrite() function toggles a pin HIGH based on what the 
stepNum index variable is. When the program starts, stepNum is 0, so steps[0] = 9. This will 
cause pin 9 to be toggled HIGH. Then the program waits for a certain number of milliseconds as 
defined by the variable, stepTime (change this at the beginning of the code to try different 
speeds). Once the delay has ended, the digitalWrite() function is used to toggle the pin LOW 
again.  
 
Finally, once the pin has been toggled HIGH and toggled LOW again, the variable stepNum gets 
incremented up by one: 
 

   stepNum ++;  //increment stepNum up by one 
 
That means that stepNum will equal 1 now. The next time through the loop, steps[1] will 
address pin 8. Once all 8 pins have been toggled, stepNum++ will set stepNum equal to 8. The 
next time through the loop, the if statement at the beginning will see that 8 is greater than 7 
and reset stepNum to 0 before the next step starts. 
 
You can observe that this code is functioning by watching the pattern of LED lights. To hear 
anything though, the CV output of this circuit would need to be connected to an external 
oscillator. The next code example adds an internal oscillator to the project so tones can be 
produced at the audio output jack. We are going to use the tone() function to play a frequency 
based on what we read on analog pin 5. For a challenge, try to add this function yourself before 
moving forward. (Since the next example is just modifying the current code, the additions and 
deletions have been highlighted to make them easier to locate.) 
 
 
PROJECT SIX_B: Add Internal Oscillator to Basic Sequencer 
PROGRAM THE ARDUINO with the Programmable_Sequencer_B sketch: 

1. Open the Arduino sketch named HEM_Programmable_Sequencer_B.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S HAPPENING? 
A new variable, tonePin, was created to represent the pin that our audio output jack will be 
connected to. This is the pin that the tone() function (described in previous examples) will 
produce its tone on. Additionally, a variable called note was declared so that we can scale our 
raw knob reading to a range of notes to provide to the tone() function. 
 
The important new addition to the loop is as follows: 
 

  //get value of CV from pin A5 
  //Note: the (void) and the delay are there to deal with ghost voltages 
  //resulting from multiplexing of the ADC and the unbuffered circuitry. 
  //This problem could also be solved with additional hardware 
  (void)analogRead(CVPin); 
  delay(8); 



  note = map(analogRead(CVPin), 0, 1023, 35, 1200);     //get frequency value by reading the A5 pin 
  tone(tonePin, note);                //write the note to the audio out 
  delay(stepTime);                 //pause code for pre-determined number of milliseconds 
  noTone(tonePin); 
  digitalWrite(steps[stepNum], LOW);  //toggle selected pin to 0v (step 1 turns off) 

 
This is where we read the voltage of the current step, map it, and apply it to the frequency 
argument of the tone() function.  
 
There is a little bit of funny business here due to the way the hardware is set up. If the analog 
pin is read directly it may carry over some voltage from the previous step’s reading. This ghost 
voltage would cause bad tracking of our steps. As mentioned in the comments, changing the 
circuit would solve this problem and make the (void)analogRead(CVPin); and delay(8); 
unnecessary. But every attempt was made to keep the hardware simple and affordable and two 
lines of code adequately addressed the problem and didn’t cost a penny.  
 
Take note that another consequence of attempting to keep the hardware as minimal as 
possible is that the audio output and the CV output affect each other. If, while listening to the 
internal oscillator, you plug the CV into a v/oct input, you will notice a change in pitch of your 
internal oscillator’s notes. Buffering the voltage from the step knobs using an op amp could 
provide a simple solution to both the ghost voltage problem and the loading at the analogRead 
pin when the CV out is connected. This is certainly worth considering for anyone looking to 
make improvements. However, our current technique is great for quickly generating audio and 
CV from a relatively simple set of components.   
 
Finally, the delay pauses the program, then noTone() to stops the current note and 
digitalWrite() toggles the step LOW. 
  
The final addition we will make to this sequencer design is to add knob to control the speed of 
the stepping. Consider trying it for yourself before uploading the next example. The unused 
knob is attached to pin A2. 
 
 
PROJECT SIX_C: Add Speed Control Knob to Basic Sequencer  
PROGRAM THE ARDUINO with the Programmable_Sequencer_C sketch: 

1. Open the Arduino sketch named HEM_Programmable_Sequencer_C.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S HAPPENING? 
The knob attached to A2 is now controlling the speed of the sequencer. The value read on pin 
A2 is stored in the variable stepTime. This variable is mapped to the new range of 300 to 1 (this 
range was set by ear and can be adjusted to taste) using the map() function, and then stored in 
the variable mappedSpeed. This new variable is then used in the delay function that sets the 
speed of the sequencer.  
 



CONCLUSION  
This 8-step sequencer is a relatively simple design and demonstrates the mechanics of the 
concept of generating analog outputs by combining digital signals and potentiometers. This 
example is severely limited by the use of the delay, though. The power of the microcontroller 
allows for many more features and options that can make our little beep machine into a 
performable instrument. In the final project of this series, the 8-Step Sequencer will be re-
written to run without using a delay for its timing, allowing for a set of new features and 
enhancements to be explored. 
 
 
CIRCUIT 5: 8-Step Performance Sequencer 
 
OVERVIEW 

The hardware for this project just expands what was already connected in the previous 
circuit by adding 3 additional knobs, 2 buttons, one switch, one additional digital output 
jack and one digital input jack with a transistor and two resistors to protect the 
microcontroller pin from unknown voltages.  
 
The example sketches start by redesigning the stepping mechanics of the basic 
sequencer from the last project to function without using delay. Then, features are 
added a little bit at a time through a sequence of example sketches with the intention of 
showing how smaller techniques can be combined into larger, more complex projects. 
Each new sketch builds on the last and the location of code changes are indicated by the 
following: “//!!!”. While working through the examples, use the “find” feature in the 
Arduino IDE to look for the 3 exclamation points. They will show the changes and the 
nearby comments will explain the techniques. 
 



 
Figure 10: Fritzing breadboard image of performance sequencer circuit 



 
Figure 11: Fritzing schematic of performance sequencer circuit 
 
You will need: 
 

• An Arduino Uno. 
• A computer running the Arduino IDE software. 
• A USB cable that can connect from your computer to the Uno’s USB type-B connector. 
• Several breadboards. 
• Some solid hookup wire or premade wire jumpers. 
• 1 x 100kΩ, 1 x 33kΩ, 11 x 1kΩ, and 1 x 100Ω resistors (it is okay to use values that are 

within about 10 – 15% of these values. 
• 12 10kΩ linear potentiometers. 
• 9 LEDs (Light Emitting Diodes). 
• 8 small signal diodes, such as 1N914. 
• 1 toggle switch. 
• 2 pushbuttons. 
• An audio amplifier. 
• 4 jacks and plugs, to match your amplifier and external modules. 
• Hand tools. 

 
CONNECT THE HARDWARE 

1. Open Fritzing File C5_StepSEQ.fzz and navigate to Breadboard view 
2. Insert all components into breadboard matching image 



3. Connect all wires on both breadboards 
4. Connect wires from Arduino to breadboards 
5. Visually Double-check all connections and wiring 
6. Connect the Arduino Uno to your Computer 

 
Hint: Open the downloaded project sketches and look for the “!!!” in the comments to quickly 
find changes as the program grows through subsequent examples. 
 
PROJECT SEVEN_A: Step Sequencer: Controller (no delay) 
PROGRAM THE ARDUINO with the A_SEQ_StepController sketch: 

1. Open the Arduino sketch named A_SEQ_StepController.ino 
2. Click the upload button near the top left of the sketch window 

 
 
WHAT’S HAPPENING? 
This code uses a custom function to keep track of time. It takes two arguments, one for how 
long each step should last, and one for how long a note should stay on during each step. The 
mechanics are very similar to the stepper() function from the Quad Gate Generator example. It 
uses the millis() function to check the current time against the last time a step was taken. This 
function is a little bit different in that it sets flags so that the rest of the program can check to 
see if it is time to start a step or if it is time to stop a step.  Most of the time we are neither 
starting a step nor stopping a step.   
 
 
PROJECT SEVEN_B: Step Sequencer: Internal Oscillator  
PROGRAM THE ARDUINO with the B_SEQ_tone sketch: 

1. Open the Arduino sketch named B_SEQ_tone.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S NEW? 
The major changes in this example involve the creation of a bunch of variables to handle 
connecting a reading the CV voltage and some for mapping the raw voltage to a range of 
frequencies that are useful in the tone() function. Then noTone() is called if the stepStop flag is 
true. tone() is called if the stepStart flag is true. If neither flag is true, the loop just keeps 
updating the stepController() function until something changes.  
 
 
PROJECT SEVEN_C: Step Sequencer: Speed  
PROGRAM THE ARDUINO with the C_SEQ_SpeedControl sketch: 

1. Open the Arduino sketch named C_SEQ_SpeedControl.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S NEW? 



In this example, the value read from a knob attached to A2 is passed into both arguments of the 
stepController() function. This will use the same value to control the speed of the stepping and 
the length of the steps. Experiment with using a second knob for the second argument. 
Inside the stepController(), the analog pin is read and then mapped to values that are 
appropriate for the two parameters. 
 

  int speedValRaw = analogRead(speedIn); //!!! read the speed knob and store the raw value 
  int stepInterval = map(speedValRaw, 0, 1023, 300, 10); //!!! map the value to new speeds (chosen by    
ear) 
 

Note above, the stepInterval (the speed of stepping) is mapped to my taste. Change the last 
two numbers in the map function to experiment with different speed control. 
 

  int durValRaw = analogRead(durIn);  //!!! read the duration knob and store the raw value 
  int stepDuration = map(durValRaw, 0, 1023, 1, stepInterval - 1); //!!! map the duration knob to a new 
range from very short to an entire step - 1ms 

 
Also note that the durations are automatically scaled based on the step interval and are able to 
be set from as little as 1 ms to as great as an entire step interval minus one millisecond. This is 
useful for keeping the start and stop flags unambiguous. 
 
The final thing to mention is that this code stops the sequencer when the knob is all the way 
down. This is used as a pause function for now. Later this knob position will be where we add a 
mode to read an external clock signal. 
 
 
PROJECT SEVEN_D: Step Sequencer: Gate Output  
PROGRAM THE ARDUINO with the D_SEQ_GateOutput sketch: 

1. Open the Arduino sketch named D_SEQ_GateOutput.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S NEW? 
When connecting the CV to an external oscillator, having the LEDs turn off partway through the 
step length will cause the oscillator to play two notes for every step: one that you intended, and 
the other corresponding to zero volts. To fix this, the steps themselves will now be kept high for 
an entire step length, but a gate signal will be written that corresponds to the step duration 
control. The internal oscillator will continue to function as before, with notes only playing for 
the selected note duration. Now the gate output and it’s corresponding LED will mirror this 
duration, allowing the oscillator to be tuned each step, and the Gate to control the volume 
through a VCA or other voltage-controlled dynamic module. (Consider rolling your own quick 
and dirty volume control with the photocell/LED pairing approach described earlier).  
 
 
PROJECT SEVEN_E: Step Sequencer: Alternate Step Modes 
PROGRAM THE ARDUINO with the E_SEQ_SteppingModes sketch: 



1. Open the Arduino sketch named E_SEQ_SteppingModes.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S NEW? 
In this example, several new options have been added for how the sequencer moves through 
its eight possible steps. There are five defined, but any number less than 1024 would be 
possible. The modes are selected by a knob attached to pin A3. 
 
The 5 Modes 

Repeat Mode: The sequencer just repeats its current step forever. This can be useful for 
tuning each step.  
Forward Mode: The sequencer advances left to right as normal. 
Reverse Mode: The sequencer advances right to left. 
Random Mode: The sequencer selects steps randomly at each step interval. 
Double Mode: The sequencer advances by two from left to right. It plays every other note. 

 
 
PROJECT SEVEN_F: Step Sequencer: Run/Pause Switch 
PROGRAM THE ARDUINO with the F_SEQ_RunSwitch sketch: 

1. Open the Arduino sketch named F_SEQ_RunSwitch.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S NEW? 
This example adds a switch that must be engaged in order for the sequencer to advance in its 
current step mode. The switch is set up and read just like a button. An if statement encloses 
almost all of the loop. If the switch is not engaged, there is no need to do all the stuff in the 
loop, just turn off the internal oscillator. If the switch is engaged, run the program like normal. 
 
 
PROJECT SEVEN_G: Step Sequencer: Reset Button 
PROGRAM THE ARDUINO with the G_SEQ_ResetButton sketch: 

1. Open the Arduino sketch named G_SEQ_ResetButton.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S NEW? 
This sketch adds a “Reset button”. The Reset button will have different behaviors in each of the 
operating modes. This means there are a lot of new lines of code for a relatively simple-
seeming addition. The behavior we have programmed for the Reset button in each mode is as 
follows: 
 

Mode 1: In step repeat mode, the reset button actually causes the step to advance at each 
step start. This is a kind of “manual run” button. 
Mode 2: In Forward Mode, reset sends the step back to step 1 at the next step start. 
Mode 3: In Reverse Mode, it will send the step back to step 8. 



Mode 4: In Random Mode, it will hold at the current step until the button is released. 
Mode 5: In Double Mode, reset sends the step back to step 1 at the next step start. 

 
 
PROJECT SEVEN_H: Step Sequencer: Scale Quantizer for Internal Oscillator 
PROGRAM THE ARDUINO with the H_SEQ_Quantizer sketch: 

1. Open the Arduino sketch named H_SEQ_Quantizer.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S NEW? 
This example adds a performable note quantizer. The quantizer is created in a custom function. 
Nearly all of the changes to the sequencer happen in this function definition. The logic of the 
quantizer is very similar to that used in the earlier quantizer example, but it has been altered 
here a little bit to better fit the context of a step sequencer. Recall that a quantizer takes some 
incoming stream of values and constrains its outputs to some predetermined values. This 
quantizer reads the voltage on the CV pin and causes the internal oscillator to only output notes 
in a desired scale. The scale can be chosen using a knob attached to pin A1. A knob attached to 
A0 will cause the tones that are played to shift up in the scale by a selected degree. This will 
allow all the knobs still play tones in the same scale, but they can be modulated up and down. 
See the earlier Note Quantizer project for a more detailed explanation of how the quantizer 
functions. 
 
Note, this only affects the internal oscillator. The CV output voltages are set directly by the 
knobs and are not processed by the microcontroller and so they cannot be quantized in this 
way. 
 
 
PROJECT SEVEN_I: Step Sequencer: Silence Steps 
PROGRAM THE ARDUINO with the I_SEQ_SilenceSteps sketch: 

1. Open the Arduino sketch named I_SEQ_SilenceSteps.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S NEW? 
This example shows how to add some logic to silence any step with a knob that is turned all the 
way down. It can be used to introduce rests into patterns of notes. There is just a little bit of 
conditional logic added toward the end of the loop to make this work.  
 
This will cause the internal oscillator to go quiet. It will not affect the CV output, but it will cause 
the Gate Output to stay LOW on these steps. If using the gate to control the volume of your 
VCO through a VCA, this can affectively silence your external tone as well. 
 
 
PROJECT SEVEN_J: Step Sequencer: Shift Button_Octave Knob 
PROGRAM THE ARDUINO with the J_SEQ_ShiftOctave sketch: 



1. Open the Arduino sketch named J_SEQ_ShiftOctave.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S NEW? 
All the knobs in the design are now in use, but there are still many parameters that it would be 
nice to have real-time control over. While we could use a microcontroller that has more analog 
inputs, or employ an additional chip called a multiplexor, both of those solutions require 
additional hardware. Instead we will use the second button, which I’m referring to as the “Shift 
Button”, to activate alternative, shifted modes for some of the knobs.  
 
These new lines use the scale knob to update two different parameters in the Quantizer 
function. When the button is pressed, the variable for the octave is updated allowing the base 
octave of the quantizer to be changed by turning the scale knob. When the button is not 
pressed, the octave variable will stay at its most recent value and the knob will update the scale 
type as usual. 
 
 
PROJECT SEVEN_K: Step Sequencer: Shift Button_Note Duration Knob 
PROGRAM THE ARDUINO with the K_SEQ_ShiftDuration sketch: 

1. Open the Arduino sketch named K_SEQ_ShiftDuration.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S NEW? 
In this update, the shift button is used to activate an alternative function for the mode selection 
knob in addition to the alternate mode selection from the previous example. While the button 
is pressed, the mode selection knob will be used to update a variable controlling the note 
length. This will allow the mode knob to set the duration of the steps. When the shift button is 
not being pressed, the mode knob will update the current stepping mode as usual and the note 
length parameter will stay wherever it was when the shift button was released. 
 
 
PROJECT SEVEN_L: Step Sequencer: Change Detection for Shifted Values 
PROGRAM THE ARDUINO with the L_SEQ_ChangeDetection sketch: 

1. Open the Arduino sketch named L_SEQ_ChangeDetection.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S NEW? 
This example addresses a problem with the shift button logic of the previous sketches. In the 
previous sketches, when the Shift Button is pressed, the shifted variable is immediately 
updated the knob’s current position. After the knob has been moved and the new parameter 
value chosen, the Shift Button is released. When this happens, the un-shifted parameter is 
immediately updated to the current knob position. This problem is noticeable when shift only 
changes one parameter, but the problem becomes quickly unmanageable when shift is used for 
more than one knob. In the previous example, every time shift is pressed, both knobs are read 



and the values are immediately applied to their variables. Playing the sequencer will reveal why 
this is such an issue: every time you shift to change a parameter, the parameter of the second 
knob will change as well if the knob is in a different position than the last time shift was 
pressed. 
 
To solve this problem, a change detection algorithm is developed to keep the knobs from 
updating after shift has been pressed or released until the program can be sure that the knob 
was intentionally turned. This means that once shift is pressed, the shifted variable will be 
locked until the knob is wiggled. Once the knob is wiggled, it is updated just like normal until 
the state of the shift button changes again.  
 
The changeRead() function locks out updates of the knobs’ variables when the Shift Button first 
changes state. (changing state just means going from being un-pressed to being pressed, or 
vice-versa). Then it quickly takes several readings of the knob and stores the differences 
between successive readings. If the total changes by more than a few digits, we can assume 
that the knob was intentionally moved. Then changeRead reports the knob has been moved 
and the chosen variable can now be freely updated until the Shift Button changes state again. 
The function returns a 1 to report that shifted parameter can be changed. It returns a 2 to 
indicate that the unshifted parameter can be changed. 
 
This change detection is implemented as a custom function. Each knob has its own 
changeRead() function defined. If more knobs are assigned shifted parameters, additional 
changeRead() functions will need to be created for each of the knobs by simply duplicating the 
entire function definition and giving it a unique name. 
 
 
PROJECT SEVEN_M: Step Sequencer: Trigger Input for External Clocking 
PROGRAM THE ARDUINO with the M_SEQ_TriggerIn sketch: 

1. Open the Arduino sketch named M_SEQ_TriggerIn.ino 
2. Click the upload button near the top left of the sketch window 

 
WHAT’S NEW? 
This example introduces our last feature: external clocking. This happens in the custom 
stepController() function whenever the speed knob is turned down to zero. Turning the speed 
knob all the way down disengages the internal clock and sets the sequencer in external clocking 
mode.  
 
We read a voltage level on the trigger input pin and each time it changes state from HIGH to 
LOW (this indicates a the presence of a new signal) then the startStep flag gets set to true and 
our sequencer takes a step, playing a note and setting the Gate Out HIGH. If there is no voltage 
detected on the pin, the stopStep flag gets set to true and notes stop and the Gate Out goes 
LOW. 
 



The last little bit of new hardware is introduced in this technique: an NPN transistor (2n2222 or 
3904 work well) is used to pull our INPUT_PULLUP trigger pin LOW whenever a voltage over 
about a volt is present on the base of the transistor via the trigger input jack. This wouldn’t be 
totally necessary if we know that our input clock signal is coming from a 5-volt device, like 
another Arduino Uno. In that case, we could read the voltage directly on the pin. But the 
addition of the transistor and its two resistors means that unknown voltage levels from external 
devices are not applied directly to the microcontroller but are instead applied to the transistor. 
This offers a degree of protection and allows for the higher voltage levels of common modular 
synthesizer formats (like Eurorack) to be used safely. 
 
 
PROJECT SEVEN CONCLUSIONS  
PROGRAM THE ARDUINO with the N_SEQ_Final sketch: 

1. Open the Arduino sketch named N_SEQ_Final.ino 
2. Click the upload button near the top left of the sketch window 

 
This last example is the exact same as the previous example, except the “!!!” markers have 
been removed.  
 
This project is meant to demonstrate the process of increasing the complexity of code by 
adding features one at a time. The sequence of examples is designed to illustrate some 
techniques for integrating existing code into a project, and to encounter some common 
problems and possible solutions along the way. There are many more features that could be 
added and substitutions that could be made with the existing controls. Likewise, the hardware 
has been kept minimal for cost and the software somewhat inelegant for clarity. As a result, 
there are many opportunities to improve the design and function of both.  
 
It is also worth mentioning that since this is an Arduino project, the code could easily be 
migrated to alternative hardware to explore additional/alternative features. For example, the 
Arduino Mega has many more inputs and outputs, so a longer sequence length would be easily 
achievable, and many more parameters could be placed under real-time control via the 
additional analog input pins. Alternatively, using something like the Teesny 3.2 or 3.6 would 
allow the use of the Teensy Audio System design tool and Audio library. This would enable a 
relatively easy expansion of the internal synthesis engine allowing this sequencer to play all 
sorts of different wave shapes, physical models, or even samples through programmable 
volume envelopes, filters, distortion, and more. Additionally, the Teensy would allow USB MIDI 
notes to be generated by the quantizer (with a little modification to the function). Your 
sequencer hardware could then control plugins and other instruments on your production 
computer using the same USB cable you used to program it. 
 
 
C: Additional Arduino Audio Learning Resources 
Once you become familiar with the projects in this chapter and supplement, the next step is to 
try some custom libraries. Libraries are like expansion packs for the Arduino software language: 



they bundle new functions geared toward specific tasks. The free and open-source Mozzi 
Library is a good starting point for synthesis and sampling. It has some powerful features that 
work on a wide variety of boards including the Uno, many example sketches and tutorials, and a 
forum to find help. Similarly, the Teensy 3.x family of boards have an expressive audio library 
and are powerful, small, and relatively user-friendly. 
 
To go beyond the use of other designers’ libraries and write your own audio programs in 
Arduino, I recommend the DSP tutorials of Amanda Ghassaei, published on the Instructables 
website and linked from her personal site 
http://www.amandaghassaei.com/projects/arduinodsp/. Additionally, Brent Edstrom’s Arduino 
For Musicians: A Complete Guide for Arduino and Teensy Microcontrollers charts a clear path 
from basic Arduino programming concepts to building custom classes and devices for digital 
signal processing.  
 
 
D: Alternative Hardware Options 
In addition to the expanded functionality possible with more complex code, deeper levels of 
sophistication are achievable by applying additional hardware. (Conversely, more minimalist 
outcomes are also possible if not all the features of the Uno are necessary.) And while the spirt 
of hacking certainly supports rolling your own solution with custom circuitry, there are many 
available alternatives to the Uno board that can provide the benefit of working hardware and 
significant educational support. The Arduino brand offers smaller board sizes for breadboard 
compatibility and project flexibility, larger sizes with more inputs and outputs, boards with 
faster processing, lower power, wireless capabilities, built-in sensors, etc. Additionally, many 
third-party companies produce Arduino-compatible boards that can be programmed from 
within the Arduino IDE with little to no modification of existing code. Some features that are 
particularly useful for audio purposes include native USB MIDI functionality and built in digital 
to analog converters (DACs) that are capable of producing output waveforms with complexity 
far beyond that of the digital rectangles of the Uno. And while the power of microcontrollers 
grows every year, there are still case where multiple streams of high quality, real-time audio 
processes become necessary. For the next step up in embedded digital audio, it may be 
reasonable to consider non-Arduino solutions like Axoloti, or single-chip computers solutions 
like the Bela Audio platform (built on the Beaglebone) or audio software running on a 
Raspberry Pi.  
 
 
 


